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A compositional link between rocky
exoplanets and their host stars

Stars and planets both form by accreting material from a

surrounding disk. Because they grow from the same material,

theory predicts that there should be a relationship between their

compositions. In this study, we search for a compositional link

between rocky exoplanets and their host stars. We estimate the

iron-mass fraction of rocky exoplanets from their masses and radii

and compare it with the compositions of their host stars, which we

assume re�ect the compositions of the protoplanetary disks. We

�nd a correlation (but not a 1:1 relationship) between these two

quantities, with a slope of >4, which we interpret as being

attributable to planet formation processes. Super-Earths and

super-Mercuries appear to be distinct populations with di�ering

compositions, implying di�erences in their formation processes.
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Characterizing the interiors of rocky exoplanets requires measurements of both
theirmass and radius. These parameters are usually provided by a combination of two
techniques: planetary radius is determined via transit observations, and planetary mass
via radial velocity (RV) measurements. The derivation of these parameters relies on
properties of the host stars, so it is limited by the precision with which those are
measured. Exoplanets orbiting stars that are similar to the Sun [i.e., F, G, or K (FGK)
spectral types] benefit from the precise characterization that is possible for their host
stars (1).
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We consider a set of 32 low-mass exoplanets (planet mass, M, of <10 Earth masses,
M⨁) orbiting 27 FGK stars with uncertainties in both planetmass and radius of <30%(2).
Above ∼4M⨁, the distribution of these planets on a mass-radius diagram shows an
apparent gap between two populations (Fig. 1). This gap has been interpreted as the
separation between rocky exoplanets and gas-rich mini-Neptunes (3-7). Our goal is to
investigate how the properties of the rocky planets depend on the composition of their
host stars. To this end, we discard the planets above the radius gap in Fig. 1, leaving 22
planets without substantial water or gas-rich envelopes, that is, rocky planets.

The abundances of elements in the atmospheres of main-sequence stars reflect their
bulk composition (except the lightest elements) within a few percent (8), which meteorite
measurements have shown to be valid for the Sun (9). Theory predicts that the Fe/Si
and Mg/Si abundance ratios in stars and planets remain very similar during the planet
formation process (10-12). The atmospheric abundances of refractory elements (such as

Fig. 1. Mass-radius diagram for the rocky planets in our sample. All planets in
our sample have masses below 10 M ⨁ and mass and radius uncertainties of <30%.
The radii of the planets are given in Earth radii, R ⨁. The light-blue dashed curves,

drawn by eye, indicate the location of the radius gap that separates the mini-
Neptunes with gaseous envelopes (red circles) from the planets without gaseous

envelopes (black circles). The solid blue curve shows the mass-radius relationship
expected for Earth-like composition (32% Fe + 68% MgSiO 3) ( 18). The gray solid

curve marks the minimum planetary radius predicted by a collisional stripping (giant
impact) model ( 23). All error bars show one standard deviation.



10/16/21, 12:01 PM Science Magazine - October 15, 2021 - A compositional link between rocky exoplanets and their host stars

https://www.sciencemagazinedigital.org/sciencemagazine/15_october_2021/MobilePagedArticle.action?articleId=1733753&app=false#articleId1733753 3/12

Mg, Si, and Fe) of solar-type stars are therefore considered a proxy of the composition
of the initial protoplanetary disk (13, 14).

We analyzed spectra of 21 host stars of the selected planets (HD 80653 does not have
an available spectrum) and measured their atmospheric chemical compositions (2). We
determined the abundances of Mg, Si, and Fe in the host stars, which are the major
rock-forming elements (15). We then inserted these abundances into a simple
stoichiometric model (16, 17) to estimate the iron-to-silicate mass fraction (

) of protoplanetary disks. For the protosolar disk, this model predicts

of 33.2 ± 1.7%, which is consistent with the iron content of Earth (∼32%), Venus (∼32%),
and Mars (∼30%) but differs from that of Mercury (∼70%) (2).

At a given mass, the rocky planets in our sample have a dispersion in radius around the
curve expected for Earth-like composition (Fig. 1). To investigate whether the densities
of these planets are linked to the primordial composition of the protoplanetary disk, Fig.
2 shows the planet density, ρ, normalized to that expected for an Earth-like composition
ρEarth-like (18) as a function of

. The normalization accounts for planets with different masses having different densities
even with the same composition, owing to compression. We find a relationship between
these two quantities, indicating that the final planetary density is a function of the
composition of the protoplanetary disk. We performed an orthogonal distance
regression (ODR) analysis to quantify the relationship and then used t test statistics to
assess its significance, finding that the observed correlation is statistically significant,
with a P value of ∼7 × 10–6 (2).

Because the normalized density is calculated from the observed properties of the
planets, whereas

is inferred from the host star composition, this trend provides observational evidence for
a compositional link between rocky exoplanets and their host stars. Rocky planets
therefore preserve information about the composition of the protoplanetary disk in which
they formed.
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Fig. 2. Densities of rocky planets as a function of iron fraction. The measured
density of each planet was normalized by the expected density of an Earth-like

composition at that mass ( 18) (Fig. 1). The iron-mass fraction was calculated from
the elemental abundances of the host star. The rocky planets in the Solar System
are indicated with their respective symbols in black; these all have the same iron
fraction because it was derived from the abundances of the Sun, not measured

directly from the planets. The black solid and dashed lines show the correlation for
the full sample and for the sample after excluding the five potential super-Mercuries,

respectively. The Solar System planets are not included in the linear regressions.
The exoplanet symbols (blue circles) are color coded by the equilibrium temperature
of the planets to search for possible trends. No color gradient is visible. All error bars

show one standard deviation.
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Although Fig. 2 shows a correlation, it is evident that for a given

, rocky planets can have a range of densities. The observed scatter is compatible with
the average uncertainty of ρ/ρEarth-like. We nevertheless tested whether part of this
dispersion could have an astrophysical origin. The size, and therefore density, of
planets could be influenced by the flux of high-energy photons that the planets receive
from their host stars (6).

Extreme irradiation from the host star can lead to atmospheric escape from low-mass
planets, with a substantial impact on the evolution of their bulk composition (19).
However, we found no correlation between the normalized density of the planets and
their equilibrium temperature, Teq (Fig. 2). Assuming that these planets have

Fig. 3. Iron contents of rocky planets. The iron-mass fraction of the protoplanetary
disk, estimated from the host star abundances ( ), is plotted as a function of the iron-
mass fraction inferred from the planet’s mass and radius ( ), as in Fig. 2. The values

are shown for two assumptions: (A) All iron resides in the core only or (B) iron is
present in both the mantle and core. The color bar indicates the mass of the planets.

Symbols and line styles are the same as in Fig. 2. The error bars of show one
standard deviation. The error bars of cover the interval between the 16th and the

84th percentiles.
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maintained a constant Teq since their formation, this lack of correlation suggests that for
rocky planets, Teq does not have a dominant impact on their radius. Alternatively, a
radial oxidation gradient in the protoplanetary disks might lead to a correlation between
orbital distance and composition and therefore also to a correlation between orbital
distance and planet density (20). However, we also found no correlation between ρ/
ρEarth-like and the orbital distance of the planets (fig. S1).

We compared the iron-mass fraction of the planets with the iron-mass fraction of the
protoplanetary disk, estimated from the host star composition. Using planet
interiormodels (18), we calculated the possible iron-mass fraction of each planet (

) using only their mass and radius, without incorporating any constraints from the host
star composition. We considered two scenarios: (i) iron is present only in the core or (ii)
iron is present both in the core and mantle of each planet. Figure 3 shows the resulting
relationship between

and

, which indicates a correlation between those quantities for both scenarios. We again
applied ODR and a t test, finding that the correlation is statistically significant (P value of
∼2 × 10–5). However, the planets span a wider range of iron-mass fractions than their
host stars. The overall distribution of the coremass fraction (which can be related to the
iron-mass fraction) of rocky planets has been shown to be wider than the overall
distribution expected from the exoplanet host stars’ composition (21).

It has been suggested that the iron fraction in planets can be increased relative to the
protostellar value if the planets formed close to rocklines (regionswhere refractory
material condenses or sublimates) (22). In this model, the enhancement in iron,
however, is not high enough to explain the amount of iron in Mercury. This effect could
explain the generally higher values of

compared with

. The trend we find in Fig. 3 suggests that if this effect operates, it must depend on the
stellar iron-mass fraction, such that stars with higher iron fraction have a larger rockline
effect.
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We identify a group of five planets (K2-38 b, K2-106 b, K2-229 b, Kepler-107 c, and
Kepler-406 b) in Fig. 3 with a higher iron content than the rest of the planets. These five
planets appear to be higher-mass analogs of Mercury, so we refer to them as super-
Mercuries, a term previously proposed (23) by analogywith super-Earth, meaning
planets with Earth-like compositions but higher masses. Several mechanisms of planet
formation and evolution have been proposed to produce high-density and high-

super-Mercury planets (24). The five super-Mercuries we identify have a wide range of
masses, unlike the concentration around ∼5 M⨁ predicted by simulations of giant
impacts (23). We suggest that a giant impact alone is not responsible for the high
density of super-Mercuries. Planet formation simulations that incorporate collisions are
unable to produce the highest-density super-Mercuries (25). There is a possible gap in
the

and rEarth-like plane (Fig. 3) between super-Mercuries and super-Earths; we expect a
continuous distribution from collisional stripping, given its stochastic nature.

Although we find only five super-Mercuries, they all orbit stars with high

(meaning an overabundance of Fe relative to Mg and Si) and high iron abundance
(table S3),which is a proxy for the overall content of heavy elements in stars. The first
trend may suggest that the mechanism responsible for the overabundance of iron in
these planets is related to the composition of the protoplanetary disk. The second trend
could imply a more efficient planet formation, leading to a formation of multiple planets
and resulting in frequent collisions. We suggest that both iron enrichment (22) and
collisional mantle stripping (25) may need to be invoked to produce an iron enrichment
in the general planet population and explain the presence of super-Mercuries.

Because the super-Mercuries may have an unusual origin and/or evolution, we
investigated whether our findings still apply if we exclude them from our sample (2). We
find that the

-

correlation remains significant (P value of <10–4) for just the sample of super-Earths
(Fig. 3) but shifts the slope to lower values (tables S6 and S7). The difference in the
slopes is, however, within the uncertainties: 6.3 ± 1.2 against 4.3 ± 0.8 for the case of
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. In addition, we found that the Fe/(Mg + Si) abundance ratio estimated for these planets
correlates with the Fe/(Mg + Si) ratio of their host stars (see the supplementary text
section in the supplementary materials). Our results show a non–one-to-one
relationship with a slope greater than 1 (supplementary text).

All but one of the stars in our sample are members of the Milky Way’s thin disk. The
exception is the ultrashort-period planet TOI-561 b, which orbits a metal-poor star in the
thick disk; it was previously found to have an unusually low density (26). Figures 2 and 3
show that the low density of this planet is consistent with the general trend and
dispersion we find for the entire sample. Theory predicts that planets orbiting around
metalpoor thick disk and halo stars should have low iron-mass fractions (17).

Several previous studies have sought links between the composition of low-mass
planets and their host stars. However, they were based either on single planetary
systems (27, 28), on a small sample of planets (16, 21, 24), or on a statistical
comparison of the overall populations (21). Owing to these limitations, none of those
studies found a strong correlation.

The stellar abundances of major rock-forming elements, such as Fe, Mg, and Si, are
commonly used to infer the bulk compositions of rocky planets (13, 14), including those
in different stellar populations of the Milky Way (17, 29). Our results provide support for
the assumptions made in those studies. The observed correlation we find between

and

has a slope steeper than 1 (

is larger than

); we interpret this as indicating that the composition of the protoplanetary disk (which
varieswith time and location) influences the resulting composition of planets in a
nonlinear fashion.
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