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* There are currently 118 known chemical elements; 27 are
human-made, the rest are found in nature.

* Why? Where do they come from?
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The Alpher-Bethe-Gamow letter in Physical Review

In 1948, astronomer George Gamow had a grad. student named Ralph Alpher,
who argued that all elements were produced during the Big Bang.

Alpher proposed that the Big Bang produced neutrons. Neutrons are
radioactive, and decay into protons and electrons with a t;/, = 10.23 minutes.

During the extremely hot universe following the Big Bang, neutron capture
would have produced all the elements, with abundances decreasing with
mass.

Does not explain the spikes in the abundance curves.

Does not explain why old stars have fewer heavy elements.

Cannot proceed past He, as no element has a mass of 5 or 8.

Hans Bethe’ s name was added by Gamow over Alpher’ s objections to play on

a, B, .

So if most elements weren "t made in the Big Bang, where were they made?
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The pp Chain

* |n 1938, Hans Bethe and Charles L. Litchfield had derived the proton-proton
chain (pp chain), the power source for small main sequence stars like our Sun.

» Superscripts are the mass number, A, the number of nucleons in the nucleus.

H+H=>H+p*+v
'H +°H = *He + s

3He + 3He = “He + 'H + 'H




The CNO cycle

* Within a year, Baron Carl von Weizsacker and Hans Bethe had independently
derived another hydrogen-fusion chain catalyzed by carbon, nitrogen, and oxygen
nuclei, the power source for more massive main sequence stars.

e Could such nuclear reactions in stars be the source of ALL chemical elements?
* If so, we' |l need a bit of background about things nuclear...

=7 H+BECDys+BN=D BC+p"+v
H+BC = “N+ys
H+ YN = ys + 150 = BN + B+ +v
'H+ BN = 12C +“He
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Types of Radiation

* In 1896, Henri Becquerel discovered radioactivity.
* In 1899, Ernest Rutherford discovered alpha and beta rays. Beta particles were
identified as electrons the same year, alpha particles as helium nuclei by

1908.

* |In 1900, Paul Villard discovered gamma rays, which were so named by
Rutherford in 1903, and identified as electromagnetic radiation by 1914.
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Nuclear Reaction Shorthand

* Nuclear reactions usually involve a large nucleus being struck by a smaller
particle, producing a different large nucleus and one or more small particles.

e It’ s easier and neater to write these reactions in a more condensed form than
the sort borrowed from chemistry.

N+ 1H - '4C + 5He YN, )''C
%;Al + (',n —> f%Mg + {H 27Al(n.p)yl\flg

;Mn ¥ %H e Fe +4 2 ()n Mn(d, 2n)>Fe

 Easier, simpler, faster, better, more cromulent.



How Likely is a Nuclear Reaction?

How likely is a small particle to strike a nucleus and cause a reaction?

The probability is expressed by the cross-section of the nucleus (as seen by the
incoming particle).

The standard unit is the cross-section area of a uranium nucleus, 1024 cm?2.

In the wartime code developed by Purdue during WWII" s Manhattan Project,
this unit was known as a barn (from the expression, “He couldn’ t hit the

broadside of a barn.”). One microbarn (ub) is a outhouse, and 102*b is a
shed. (Sometime (but not now), ask me about pigs, cows, and shakes.)



What are Magic Numbers?

They are 2, 8, 20, 28, 50, 82, and 126.

In 1950, Maria Goppert-Mayer published her nuclear shell model, in which
nucleons orbit in shells analogous to those of electrons in an atom.

The numbers represent the capacity of successive shells.

Just as for electrons, nuclei with filled nuclear shells are more stable and
abundant. (°°V, N=28, 99.765%; Sn, Z=50, ten stable isotopes; Pb, Z=82)

Those with shells with one too many or one too few nucleons are less stable.
(Sb, Z=51, two stable isotopes)

Nuclei in which both neutron and proton shells are filled are termed “doubly
magic’, and are especially stable and abundant. (*He, 99.999866%;
160, 99.756%,; 2%%Pb, Z=82, N= 126)

She also discovered spin-orbit coupling in nucleons, which explains the even-
odd effect.

She later worked on the “Super” with Teller.



We' Il also need the REAL periodic table, the
Chart of the Nuclides.

* Here are all the stable isotopes, plotted as # of neutrons vs. # of protons (the
mass number, Z).

* Notice they don’ t follow a 1:1 line, since extra neutrons are needed to beef up
the strong nuclear force and counter the repulsion of the proton charges.

(A plot showing the stable nuclides)
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Relative Locations of the Products of
Various Nuclear Processes
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Meet the Authors

e That’ s Margaret Burbidge née Peachey, FRS, lead author, British astronomer, &
champion of women in science. She’ s 96 years old now, and living in CA.

* To her left is her husband, Geoffrey Burbidge, FRS, also a British astronomer.

* On theright is Willie Fowler, American nuclear physicist, Nobel winner for this
work, and former Director of Cal Tech’ s Kellogg Radiation Lab. (Yes, that

Kellogg.) \\
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Meet the Authors, cont “d.

* This spiffy-looking gentleman is Sir Fred Hoyle, FRS, British astronomer, inventor
of the term “Big Bang” (though he did not believe in it), science fiction
author, and espouser of several odd hypotheses now known to be incorrect.

s (Probably cost him

a g SEEEREE-——— Nobel Prize for this

R N  —TV1:Y0




The Triple Alpha Process, aka He-Burning.

* In 1952, “Hoyle went boldly into...Fowler’ s lab...and said that there had to be a
resonance of 7.69 MeV in the *?C nucleus, and that all the physicists in the
world had missed it.” — Wikipedia. His reasoning was that the universe had
lots of carbon, and the only way he could think of to make it was the reaction
below, which requires that specific resonance. Stars doing this leave the

Main  Sequence and become Giant stars.

 Ward Whaling found it. Some argue this implies fine-tuning of the multiverse:

https://en.wikipedia.org/wiki/Triple-alpha_process#lmprobability and_fine-

tuning.

Triple-alpha process
“He + “He =@ °Be

‘He + Be = ’C + f~ + B*
‘He + 12C = 10 + v



https://en.wikipedia.org/wiki/Triple-alpha_process

The Four-Way Collaboration.

* In 1953, Fowler and the Burbidges went to Cambridge to work with Hoyle. They
began working on the details of whether stellar nucleosynthesis was a viable
mechanism to produce the chemical elements. By 1957, they published

B2FH.

e They assumed the Big Bang had produced H and He. |t would be decades
before the details of Big Bang Nucleosynthesis (BBN) were worked out.
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Fowler Proposes the a-Capture Process, and Hoyle the e-
(for equilibrium-) Process
° 12C(a,V)16O
* 1°0(a,y)*°Ne
* Ne(a,y)**Mg
* *Mg(a,y)*Si
 28Sj(a,y)3%S
 325(a,y)3°Ar
* 36Ar(a,y)*°Ca
 40Ca(a,y)*Ti, which undergoes two B decays to “*Ca
o 44Ca(a,y)*eTi
* Stars doing this become Supergiants.

With each reaction, the star’ s core temperature increases; Hoyle reasoned that
eventually the high temperatures would cause a plethora of nuclear reactions all
in equilibrium, producing the elements near Fe.



Correction

« We now know they didn’ t get that bit quite right; here’ s what really happens.

Carbon burning ~1000years | (.6 GK
12C + 12C =» 2Ne + “He
12C +“He = %0 +v
160 + “He =» 2Ne + v
20Ne + “He 9*Mg + v
Core contracts
Neon burning years 1.2 GK
20Ne + v = %0 + “He
20Ne + “He =» Mg +v
Core contracts
Oxygen burning months 1.5 GK
160 + 160 =» 28Sj + “He
Core contracts
Silicon burning ~ a day 2.7GK to 3.5 GK
28Gi + ‘He =328
328 + 4He =» 3Ar
...et cetera, down to...

32Fe + “He =» 6Ni |




The Burbidges Decipher the Rest — the s-Process

* They proposed the s-process, the slow neutron-capture process.
* The neutron sources are, first 3C(a,n)°0, then 2°Ne(a,n)**Mg.

* Asthe star’ score is working its way to Fe, each stable nucleus captures
neutrons until it reaches a radioactive nucleus, which B-decays into the next-
heavier element. This stairsteps up the Chart of the Nuclides, filling in many of
the isotopes not made by the a-capture processes.

* At first, captures are every half-million years or so, but as heavier elements are
made, core pressures and temperatures rise, until captures are happening
roughly every decade.

» See the Chart of the Nuclides for the path.
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The Burbidges Decipher the r-Process

When the core become Fe, >°Fe is the most stable nucleus, so no more a-
captures are possible. Fusion reactions stop, no more energy is generated in
the core, so there’ s no energy release to fight gravity. The core implodes,
then rebounds in a supernova explosion, tearing the star apart.

They proposed the r-process, the rapid neutron-capture process; that happens
during the supernova fireball.

They proposed a neutron source, which we now know is wrong, but basically
the high temperatures of the fireball photodisintegrate Fe and Ni into He and
neutrons, while electron capture by protons produces more neutrons.

Captures are every few milliseconds over roughly 100 seconds. This doesn’ t
allow time for B-decay, and produces nuclei far to the right of stability, which
then undergo serial B-decay.

The r-process is stopped by fission at Pu.

Some isotopes are produced by both the s- and r-processes, but some are
unique to each one; see the paths on the Chart of the Nuclides.
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The Result
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Gratuitous fossil rugose coral, Monte Cristo Fm. (Mississippian),
south of Goodsprings, NV. The Monte Cristo may be equivalent
to the Redwall Limestone of the Grand Canyon.






