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Over the past 3 billion years, an endogenous circadian rhythmicity has devel-

oped in almost all life forms in which daily oscillations in physiology occur.

This allows for anticipation of sunrise and sunset. This physiological rhythmi-

city is kept at precisely 24 h by the daily cycle of sunlight and dark. However,

since the introduction of electric lighting, there has been inadequate light

during the day inside buildings for a robust resetting of the human endo-

genous circadian rhythmicity, and too much light at night for a true dark to

be detected; this results in circadian disruption and alters sleep/wake cycle,

core body temperature, hormone regulation and release, and patterns of

gene expression throughout the body. The question is the extent to which cir-

cadian disruption compromises human health, and can account for a portion

of the modern pandemics of breast and prostate cancers, obesity, diabetes and

depression. As societies modernize (i.e. electrify) these conditions increase in

prevalence. There are a number of promising leads on putative mechanisms,

and epidemiological findings supporting an aetiologic role for electric lighting

in disease causation. These include melatonin suppression, circadian gene

expression, and connection of circadian rhythmicity to metabolism in part

affected by haem iron intake and distribution.
1. Primordial source
The Sun, our primordial source, provides bright light during the day, and vir-

tually no light at night. For several billion years, the solar signal has moulded

an endogenous circadian rhythmicity in almost all life forms; for mammals this

includes sleep–wake, core body temperature, metabolism and oscillations in

gene expression and hormone production throughout the body. This endogen-

ous rhythmicity has allowed for a physiological anticipation of the onset of day

and the onset of night, a distinct competitive advantage in a dangerous world.

From time immemorial, these circadian rhythms have been reset each day to

precisely 24 h by exposure to the Sun.

Electric light, by contrast, is dim and ill-timed, disrupting all aspects of our

endogenous circadian rhythmicity; its intensity and spectral content are often

not adequate during the day for proper circadian resetting, and are too much

during the night for a true ‘dark’ to be detected [1]. This can lead to ‘circadian

disruption’ compromising general well-being and perhaps increasing risk of a

variety of specific diseases [2–5].

The first proposal for an association of electric lighting at night and a dis-

ease was for breast cancer [6]. In the beginning, this was based, perhaps

simplistically, on a nocturnal light-induced suppression of melatonin, and the

observed oncostatic action of melatonin on human breast cancer cells in vitro
[7] and in rodent models of breast cancer [8,9]. As the mysteries of the circadian

system are being revealed, it is evident that circadian disruption from electric

lighting might also play a role in some other major maladies including obesity,

diabetes, and depression and affective disorders [2,10,11], all diseases that are

on the increase in the industrialized societies of the world, as well as growing

problems in the developing world.
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2. Diseases of modern life
There is now an abundance of experimental evidence in

humans that electric light during the night and altered sleep

can disrupt circadian rhythmicity in hormones, circadian

gene expression, markers of metabolism and many other

physiological parameters (e.g. [12–19]).

It must be noted that the studies of ‘sleep deprivation’ do

not isolate disrupted sleep from exposure to light at night; in

fact, light during the night, even at very low levels, may help

cause disrupted sleep. For example, the study conducted by

Ackerman et al. [15] used a protocol in which 12 young males

were examined over a 48 h period in a sleep laboratory. For

nights 1 and 2 (N2) there was an 8-h period of total dark,

whereas for night 3 (N3) light level was less than 5 lx through-

out the night; the subjects were instructed to remain awake

during this entire night as they lay recumbent in bed. The

authors found significant differences between N3 and N2 in

BMAL1 (now known as ARNTL) expression (lowered after

N3) and heat shock protein (HSPA1B) expression (elevated

after N3). For N3, dim-light melatonin onset (DLMO) was

the same as N2, whereas melatonin acrophase was delayed in

N3 but total production was increased compared with N2.

They interpret their findings as due to sleep deprivation as

opposed to light at night. This study was very carefully con-

ducted by accomplished researchers. However, why did the

authors not use total dark for N3? Probably because the sub-

jects could not stay awake in total dark; so, electric light may

enable sleep deprivation, even if too low to directly suppress

melatonin production. In this sense, their results are also due

to ‘light-at-night’. In addition, the study of Moller-Levet et al.
[16] does not separate effects of light exposure from effects of

short sleep at all, as described in Stevens et al. [5].

Disentangling sleep disruption from light-induced circa-

dian disruption experimentally is difficult if not impossible.

Although the differences are scientifically interesting, from

the health perspective it may be moot: electric light at

night, even at low levels, may lead to circadian disruption

directly and/or sleep disruption indirectly, either of which

may result in adverse health consequences for human beings.

The physiological effects of light at night and sleep disrup-

tion have been ‘proven’ in the sense that there is general

acceptance in the scientific community of its truth; i.e. a con-

sensus of experts. What has not been ‘proven’ is that electric

light-at-night causally increases risk of cancer, or obesity, or

diabetes, or depression. These connections are each plausible

because many of the established physiological effects of circa-

dian disruption and/or disturbed sleep due to light at night

are also implicated in disease pathogenesis; for example, cell-

cycle regulation [20] and DNA damage response [21] for

cancer, altered leptin and ghrelin for obesity [22], and loss of

glycaemic control for diabetes [23]. However, the direct evi-

dence is circumstantial (i.e. observational epidemiology), as it

must be because experiments in humans (randomized clinical

trials) are unethical for any agent suspected of causing harm.

So what does this circumstantial evidence look like?

The first prediction based on the light-at-night theory for

breast cancer causation was that women who work non-day

shifts would be at higher risk [5]; this was originally based

on a suppression of melatonin leading to a rise in circulating

oestradiol, a known risk factor for breast cancer [24]. Because

almost all people in modern societies are exposed to electric

light during at least part of the night, day working women
would not be unexposed making detection of a real effect

of light-at-night difficult. Nonetheless, it was reasoned that

women who worked at night would have even more exposure

[25]. Results have been mixed but on balance support an associ-

ation of night work with increased risk of breast cancer [26].

There have been only a few studies of physiological differences

between day working women and shift working women that

might explain a higher risk. In the most recent, Bracci et al.
[27] found striking differences in expression of circadian

genes in lymphocytes (see §4), and significantly higher circu-

lating oestradiol in shift working women. They compared

rotating shift nurses to day working nurses, and obtained a

blood and urine sample in the morning before a day shift

that was after a day off from work for both groups.

Can observational epidemiology lead to proof of causation?

The answer is yes, depending on the definitions of the words

‘cause’ and ‘proof’. It has been proven that cigarette smoking

causes lung cancer based solely on observational epidemiology;

‘proof’ meaning a consensus of experts and ‘causes’ meaning

causally increases risk. The International Agency for Research

on Cancer (IARC) has formalized this process admirably in

its monograph series of workshops to assess specific agents

suspected of causally increasing risk of cancer. The IARC ‘Pre-

amble’ provides a detailed guide for the structure of this activity

[28]. There are five levels of confidence in the evidence which a

panel of invited experts ponders: 1, ‘human carcinogen’; 2a,

‘probable carcinogen’; 2b, ‘possible carcinogen’; 3, ‘inadequate

evidence’; 4, ‘probably not a carcinogen’. Meetings are held in

Lyon, include a couple of dozen experts, and last 10 days.

Evidence includes human cancer studies (observational

epidemiology), animal cancer studies (toxicology) and mechan-

istic data (biomolecular effects of the agent that might lead

to cancer). If the epidemiology, in the opinion of the expert

panel, provides ‘sufficient’ evidence of association that

cannot otherwise be explained by confounding or bias, then

the agent is classified as 1: ‘human carcinogen’ regardless of

whether or not there is an animal model or an accepted biologi-

cal mechanism. In other words, when the epidemiological

studies accumulate to the point where a reasonable expert con-

cludes that there is no other viable explanation for the results,

then the only remaining explanation is that the agent causes

cancer. If the epidemiology is not considered to be at that

point, then the results of animal cancer studies play an import-

ant role in the classification. And finally, basic mechanistic

studies may augment confidence in a classification among the

expert panel.

Agents assessed since 1975 and classified as 1 ‘human carci-

nogen’ include smoking, ionizing radiation, hepatitis B virus,

benzene, polychlorinated biphenyls and 98 others. Class 2a is

just short of class 1 in weight of evidence, and much stronger

than the 2b classification. In 2007, the IARC classified ‘shiftwork

that involves circadian disruption’ as a class 2a [29] so it joined

anabolic steroids, vinyl fluoride, nitrogen mustard and 62 other

agents. The shift work classification was based on a compelling

animal model, strong mechanistic data and ‘limited’ epidemio-

logical studies: the epidemiology was consistent with a causal

relationship, but bias or confounding could not be entirely

ruled out as possible explanations for the results.

Other predictions have also been made based on the

‘light-at-night’ theory with varying degrees of support [30]:

blind women would be at lower risk of breast cancer [31],

and reported sleep duration would be inversely associated

with risk [32]. Finally, on the population level, if light at
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night accounts for any sizeable proportion of the breast

cancer burden in society, then ambient light level as

measured by satellite at night should be correlated with

breast cancer risk across communities [33]. This has been

tested and confirmed within Israel [34], and among 164

countries of the world [35].

Recently, epidemiological evidence has been published

on the association of ambient bedroom light level at night

during the sleep period (either measured or self-reported)

and risk of obesity [36,37], and of depression [38]. Of

course, it is unclear how accurate a self-report might be, but

these findings are intriguing and analogous to the few

case–control studies to examine risk of breast cancer [39,40]

in which women were asked to rank the typical light levels

in their bedrooms at night from ‘totally dark’ to ‘can see

end of bed’ to ‘can read a newspaper’. If these reported

associations are causal, then there would be obvious and

easy interventions such as to use black-out shades and elim-

ination of all light sources in the bedroom no matter how

minute; if night lights are needed, a dim red light would be

the least disruptive to the circadian system.
0

3. Circadian light detection
The mechanism by which the circadian system perceives light

is one of the more interesting discoveries in modern biology.

Only in 1998 with the discovery of melanopsin [41] did the

details begin to become elucidated. Then in 2002, the first

new photoreceptive cell in the retina to be discovered in

150 years was described [42–44]; these cells are called

ipRCGs (intrinsically photoreceptive retinal ganglion cells),

contain melanopsin, and are maximally sensitive to light of

wavelength about 480 nm, which is not the peak sensitivity

of the visual photoreceptors. Why would the photoreceptor

for the circadian system be tuned to 480 nm? Although sky-

light through most of the day contains high irradiance at all

wavelengths, the maximum is at 480 nm and is perceived

by human vision as that beautiful blue on a clear day at

mid-morning. Perhaps this is the best wavelength to signal

to an organism that it is day as opposed to night, and thus

melanopsin evolved, teleologically speaking, for that pur-

pose. The visual system with rods and cones has a very

different duty than the ipRCGs; vision is about image for-

mation and navigating the environment, whereas ipRCGs

must help keep the physiology of the organism on a strict

24 h schedule in synchrony with the Sun.

Most people in the industrialized world must use electric

light for work and domestic life. As a result, the amount of elec-

trical illumination of the human environment has grown

dramatically in the past 50 years [45], with large geographical

variation [46]. The question is how to use that light to maximum

benefit. No use of electric light may result in the most robust

and synchronized circadian rhythmicity, but obviously ignores

the requirements of a modern life. At the other end, constant

bright light would be tantamount to torture. Ideally, use of

light should optimize work, home life and entertainment, yet

minimally influence circadian physiology.

In a unique approach to demonstrating the impact of elec-

tric light on circadian rhythmicity in people in the modern

world, Wright et al. [47] recruited eight participants (two

female; average age 30) who lived and worked in and

around Boulder, Colorado. Each subject completed a two-
week study in July in which they were first assessed for

circadian markers in their work and home environments,

and then spent a week camping in the mountains with no

use of electric lights at all. Among the eight subjects were a

range of chronotypes (lark/owl; morning types/evening

types) with a wide range of habitual bedtimes. Using a sal-

ivary measure, the mean melatonin onset was about 2 h

after sunset in the baseline, modern life, condition with a

high inter-person variability; melatonin offset was a little

more than 2 h after sunrise. Melatonin onset and offset are

regarded as the beginning and end of biological night for

humans. Sleep in the baseline condition began around mid-

night and ended before the melatonin offset. After a week

camping, among these same subjects, melatonin onset was

very close to sunset and melatonin offset very close to sun-

rise, and there was far less variability among the subjects;

the larks and owls were both aligned closely to the duration

of natural daylight. Start of sleep also shifted to an earlier

time and there was much less variability among the subjects.

Interestingly, the duration of light exposure under baseline was

greater than while camping, as would be expected, but total

light exposure was far greater while camping. Wright et al.
[47] conclude: ‘Increased exposure to sunlight may help to

reduce the physiological, cognitive and health consequences

of circadian disruption’. They also point out: ‘Natural sunlight

is a stronger environmental zeitgeber or time cue for the

internal circadian clock than is electrical lighting in the con-

structed environment’. In other words, people in the modern

world not only get light during the night, they get far less

light during the day inside electrically lit buildings. This can

lead to circadian confusion and de-synchronization of the

rhythms throughout the body.

There are a number of aspects of the impact of light-

at-night on human circadian rhythmicity that have been

elucidated: (i) blue light is most effective, red the least [12];

(ii) there is a dose–response [48,49]; (iii) light exposure

during the day influences night-time sensitivity [50];

(iv) there are differences among individuals in sensitivity

[51,52]; and (v) even through closed eyelids, a very bright

light can suppress melatonin [53]. These are important

findings for continued fruitful study of the health effects

of exposure to light-at-night, and thereby what interven-

tion and mitigation strategies might be most effective in

the future.

Lucas et al. [54] address the question of optimal lighting

for the modern life and circadian health. They describe the

physiology of the non-visual light detection pathway, the fact

that it is most sensitive to wavelength 480 nm, and they

advocate an additional light exposure metric based on this

biology. The standard illumination unit is ‘photopic lux’ or

usually shortened to ‘lux’. Meters to measure illumination,

used by photographers for example, are calibrated to weight

the wavelength of the incident light to yield a single number

reflecting the best colour (or daytime) vision in human

beings, the peak wavelength for which is 555 nm. However,

the peak circadian effective wavelength is, as mentioned

above, 480 nm, so that the standard lux meter may not give a

good indication of exposure to ‘circadian effective’ light.

Lucas et al. [54] point out that circadian effective light at night

disrupts circadian rhythmicity, yet is also optimal for an alert-

ing response, important for many work-related requirements

of the job. This presents a conundrum for lighting the built

environment at night for work: bright, short wavelength light
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optimizes performance, but compromises circadian rhythmi-

city. For leisure, however, the message is to keep light as dim

as comfortable, and shifted toward longer wavelengths.
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4. Molecular epidemiology: circadian genes and
disease

If circadian disruption compromises health, then changes in

circadian gene function should have an impact [55,56].

There is a large and growing literature on the effects of circa-

dian gene knockouts (KO) in mice, and polymorphisms in

humans, on disease risk [57–63]. These studies suggest the

possibility that absent or altered function of circadian genes

may increase the risk of some diseases in people. From this

line of evidence comes the obvious question of whether

epigenetic mechanisms from environmental exposures, such

as light-at-night, could also alter function of ‘normal’ or

wild-type circadian genes in such a way as also to increase

disease risk and/or severity.

Emerging areas of interest for circadian and cancer

researchers are the roles of the core circadian genes in maintain-

ing proper gene expression profiles, with a particular focus

on their influence over cancer-related transcripts. So far, there

have been ten core circadian genes identified in humans:

CLOCK [64], casein kinase I, epsilon (CSNK1E) [65], crypto-

chrome 1 (CRY1), cryptochrome 2 (CRY2) [66], period 1

(PER1), period 2 (PER2), period 3 (PER3) [67,68], neuronal

PAS domain protein 2 (NPAS2) [69], TIMELESS [70] and aryl

hydrocarbon receptor nuclear translocator-like (ARNTL) (also

referred to as brain and muscle Arnt-like protein-1 (BMAL1))

[71,72]. It has been estimated that 2–10% of all mammalian

genes are clock-controlled, indicating extensive circadian

gene regulation [73]. Biological clocks controlled by circa-

dian genes provide organisms with a survival advantage by

organizing their behaviour and physiology around predictable

cyclic changes in the environment. These core circadian genes

have also been shown to play critical roles in many cancer-

related biological pathways including cell-cycle regulation,

DNA repair and apoptosis [74,75].

Some pioneering work in the field of molecular cancer

epidemiology has demonstrated that genetic variants in the

circadian genes may be biomarkers associated with breast

cancer risk. In the first molecular epidemiologic study of a cir-

cadian gene and risk of human cancer, a structural variant in

the circadian gene PER3 was detected to be significantly

associated with increased risk of breast cancer [76]. This

clock–cancer connection was confirmed in later studies,

which showed genetic associations between the circadian

genes NPAS2 [77], CRY2 [78] and CLOCK [79] and breast

cancer risk.

Epigenetic changes may be equally important as genetic

mutations for the multi-step process of cancer development

and progression. Epigenetic changes, including DNA methyl-

ation, have recently been identified as important contributors

to gene regulation, perhaps accounting for even more of the

variability in gene expression than is attributable to structural

genetic variations. The epigenetic association analyses of cir-

cadian genes and breast cancer further found significantly

hypomethylated promoter of CLOCK [79] and hyper-

methylated promoter of CRY2 [78] in breast cancer cases

compared with controls. These detected epigenetic changes

are consistent with their expression patterns in breast
tumour tissues compared to adjacent normal tissues: high

expression level of CLOCK as a putative ‘oncogene’ and

low expression level of CRY2 as a possible ‘tumour suppres-

sor’. These findings, together with the previously identified

clock–cancer connection in breast cancer, warrant a more

comprehensive investigation of methylation status, especially

in the promoters of circadian genes, and an analysis of the

impact of these epigenetic changes on breast cancer risk in

a larger population.

A variety of environmental agents, ranging from brassica

vegetables to nitrous oxide, might conceivably modify DNA

methylation in humans. However, relatively little is known

about the effects of circadian disruption caused by shiftwork

on the epigenomic architecture.

The first genome-wide methylation analysis investigating

epigenetic impact of circadian disruption revealed that the

methylation patterns of more than 5000 CpG sites (a cytosine

separated by only one phosphate from a guanine in the DNA

sequence) were altered in long-term shift workers [80].

Interestingly, nearly twice as many CpG sites were hyper-

methylated in shift workers than were hypomethylated.

These data are consistent with the general consensus that

most tumours undergo widespread loss of methylation at

the global level, but exhibit hypermethylation at CpG-rich,

gene-associated regions such as those included on the array

chip [81]. Notably, many of the differentially methylated

CpG sites were located near the promoter sequences of

methylation related and cancer-relevant genes. Further analy-

sis also found that 50 CpG loci corresponding to 31 miRNAs

were differentially methylated in night shift workers com-

pared with day workers, including the circadian-relevant

miR-219, the expression of which has been implicated in

several cancers [82]. MicroRNAs (miRNAs) are a class of

endogenous small non-coding RNAs that negatively regulate

gene expression by inducing degradation or translational

inhibition of target mRNAs. miRNAs are involved in the con-

trol of many cellular processes altered in cancer, including

proliferation, differentiation and apoptosis [83].

These findings support the hypothesis that long-term

exposure to shift work can alter epigenetic patterns. This

hypothesis was further tested on two cancer-relevant circa-

dian genes, CLOCK and CRY2, as previous findings had

demonstrated that breast cancer patients tended to have

low levels of CLOCK promoter methylation [79] and high

levels of CRY2 promoter methylation [78]. Significant methyl-

ation changes in these genes were noted in this study of shift

workers [80], and for both genes, the direction of the changes

in shift workers was identical to that observed in breast

cancer patients. This finding has been supported and

extended by Bracci et al. [27] who reported higher expression

(based on transcript levels in peripheral blood lymphocytes)

of CLOCK and lower CRY2 among shift working women

compared with day working women. Bracci et al. [27] also

reported higher expression of Rev-Erb-Alpha in shift working

women, a finding of potential importance to a link with

metabolism (see §5).

As transcriptional regulators, circadian genes mediate the

expression of many cancer-related genes and play various

roles in cancer-relevant pathways such as DNA repair

[84,85]. As such, the epigenetic impact of shift work on the

activity and function of core circadian regulators may provide

a missing link in the relationship between breast cancer and

night shift work.
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Among the many association studies in humans and

functional studies in mice of the circadian genes, ARNTL
may be one of the more interesting. ARNTL is the only circa-

dian gene for which its knockout alone leads to arrhythmia

in mice [86]; the knockout of any of the other circadian genes

does not by itself obliterate circadian rhythmicity because

there is redundancy in the system (e.g. three Period genes

and two Cryptochrome genes). [ARNTL does have a paralog,

ARNTL2, but it is under direct ARNTL control unlike other cir-

cadian gene paralog groups]. ARNTL may be a key link from

the circadian system to metabolism, possibly through its

control by Rev-erb-alpha and ROR (see §5). Deficiency of

ARNTL in mice has been reported to accelerate overall

ageing and cellular senescence in tissues, implicating

ARNTL in DNA damage response and in response to oxidative

stress [87].
.B
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5. Iron and haem
There has been a recent surge in interest in the interrelation-

ships of metabolism with circadian rhythmicity [88]. For

many years, growing epidemiological evidence has implicated

short sleep duration and/or sleep disturbance with higher

weight and with risk of type 2 diabetes [89]. The mechanisms

for this have been opaque until the recent molecular biological

insights into the interactions of circadian genes with genes

implicated in control of metabolism. Sahar & Sassone-Corsi

[90] suggested that since CLOCK is a histone acetyl transferase,

its disruption might play a role in breast cancer risk by altering

expression of key cell-cycle regulators known to be involved in

breast cancer pathogenesis such as cyclin D1. More broadly,

CLOCK and SIRT1 interact in control of metabolism [91], and

this may thereby influence oxidative balance in cells and tis-

sues which itself might reset circadian rhythmicity. Tamaru

et al. [92] reported that oxidative stress at high enough levels

accomplishes this circadian resetting via ARNTL transcription

factor; the stressor they used was H2O2, which itself is not a

free radical, but when it encounters iron, it breaks down to

hydroxyl radical, a potent mediator of biomolecular damage

[93,94]. Another intriguing finding is that the ligand for rev-

erb-a is haem [95]. Rev-erb-a and ROR form a secondary

circadian loop that interacts with the primary negative feed-

back loop of CLOCK/ARNTL and PERs/CRYs in which

Rev-erb-a represses the expression of ARNTL, whereas ROR

stimulates expression [96]. Thus, iron seems to be emerging

as playing a central role in the connections among nutritional

state, timing of food intake and circadian rhythmicity.
6. Colon cancer and prostate cancer
Although the most evidence to date is on circadian disruption

and breast cancer, there is also a rationale for an interest in

cancer of the colon. Two epidemiological studies have reported

significantly elevated risk of colon cancer in shift working

women [97] and men [98]. Other evidence includes an obser-

vation that short sleep duration was associated with an

elevated risk of colorectal adenoma [99], and reported associ-

ations of circadian gene polymorphisms and colon cancer

risk [100]. Red meat intake as a risk factor for colon cancer is

one of the few consistent findings of epidemiological studies

[101]. Haem iron content of red meat is a prime suspect in

the aetiology of this increased risk [102].
Prostate cancer risk may also be affected by circadian dis-

ruption for reasons similar to those for breast cancer [103].

The evidence base is far smaller than for breast cancer, but

there are some interesting data on circadian gene variants

and risk [104], and also epidemiologic data which report a

higher risk in shift workers [98].
7. The need for sleep and the need for dark
Since the introduction of electricity, there has been a change

in what is considered ‘normal’ sleep (figure 1a). Historical

evidence indicates that sleep before electricity was biphasic

[105]; there was a ‘first sleep’ which lasted several hours,

then a period of wakefulness either in the dark or with a

small fire, followed by a second sleep. Ekirch [105] argues

that this biphasic sleep evolved over a very long time

period and has been lost in the contemporary world. The

modern compacted sleep is typically confined to a 7 or 8 h

period of relative dimness (few people sleep in a completely

dark bedroom environment). On this basis, Ekirch also specu-

lates that one of the losses due to our compacted sleep is that

of dream consolidation, and its potential impact on psycho-

logical health. Figure 1b shows some of the myriad societal

changes brought with electric lighting.

During the night, light from a fire is very different from

that from an electric light: camp fire and candles are far

dimmer than electric lighting and the wavelength is strongly

skewed toward the red end of the spectrum; as a result, fire-

light has much less impact on circadian rhythmicity than

electric light.

As a modern recreation of sleep in times past, Wehr [106]

conducted experiments in human subjects which demon-

strated biphasic sleep in a laboratory setting. Subjects on an

8 h dark schedule slept for about 7.5 h (by polysomnogra-

phy), and their elevated night-time melatonin production

was limited to the dark phase, as expected. The same subjects

on a 14 h dark period slept for an average of about 8.5 h in

two episodes separated by a period of ‘quiet wakefulness’

in between. The term ‘quiet wakefulness’ reflects the fact

that in this laboratory setting, the subjects were required to

remain in bed in the dark. Melatonin production, however,

showed no dip in the middle of the night and remained

high for close to 12 h. Although dark is required for pineal

melatonin production, sleep is not.

The point of emphasis to all this is that while sleep is deeply

important to well-being, so too is exposure at night to dark. The

importance of sleep has finally entered mainstream thinking

and practice; however, the importance of dark is still greatly

underappreciated. Without dark, sleep is difficult and compro-

mised. Without dark, circadian rhythmicity, as reflected in

nocturnal melatonin production, is disrupted. Both sleep dis-

ruption and circadian disruption have been shown to have

profound effects on physiology. Absence of dark at night

can lead to both, which may then have negative effects on

long-term health in a vast array of maladies.
8. Conclusion
The question posed in the title, ‘Electric light, particularly at

night, disrupts human circadian rhythmicity: is that a problem?’

cannot yet be answered with assurance, but is important to

ask. It must be stressed that there is ample evidence for the
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encapsulated by electric light. (b) Electricity has changed society in many ways. (Online version in colour.)
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disruptive effect of electric light on physiology in short-term

experiments in humans. There is some epidemiologic evidence

on the long-term impact on disease but this evidence is not yet

adequate to render a verdict. It is an urgent issue given the

increasing pervasiveness of electric lighting in our built envir-

onment that heretofore has been designed without any

consideration of circadian health in mind.

Excessive lighting of the night sky is as important an

Earth issue as climate change. The impact on life, including

plant, insect and animal, is now beginning to be appreciated

as large. Disruption of circadian rhythmicity has profound

effects on physiology, many aspects of which are deleterious.

Neonates and small children, even beginning in utero, may

be at particular risk because of their rapidly developing

physiology [107].

In addition to the impact on life forms, generation of light

at night also contributes directly to greenhouse gas emissions

from fossil fuel combustion to produce the electricity needed:
almost 20% of electricity consumption worldwide is for

lighting, and at least 30% of this light is wasted [108,109].

As an environmental issue, lighting of the day inside

buildings impacts only humans (and maybe cockroaches),

whereas lighting the night-time affects all life including

humans. Just as the technology to artificially light the night

exploded in use during the twentieth century, newer technol-

ogy (a field called ‘photonics’) is now making it possible to

generate, direct and manage light at night for improved

visual acuity, more efficiency and less waste, and to better

accommodate circadian physiology of life forms in general,

but notably of the species directly responsible for the

pervasiveness of light at night, which would be us.
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